受験関連用語集
群の表現
数学において、群の表現(ぐんのひょうげん、英: group representation)とは、抽象的な群 G の元 g に対して具体的な線形空間 V の正則な線形変換としての実現を与える準同型写像 π: G → GL(V) のことである。線型空間 V の基底を取ることにより、π(g) をより具体的な正則行列として表すことができる。
数学において、群の表現(ぐんのひょうげん、英: group representation)とは、抽象的な群 G の元 g に対して具体的な線形空間 V の正則な線形変換としての実現を与える準同型写像 π: G → GL(V) のことである。線型空間 V の基底を取ることにより、π(g) をより具体的な正則行列として表すことができる。